Near IR scanning angle total internal reflection Raman spectroscopy at smooth gold films.
نویسندگان
چکیده
Total internal reflection (TIR) Raman and reflectivity spectra were collected for nonresonant analytes as a function of incident angle at sapphire or sapphire/smooth 50 nm gold interfaces using 785 nm excitation. For both interfaces, the Raman signal as a function of incident angle is well-modeled by the calculated interfacial mean square electric field (MSEF) relative to the incident field times the thickness of the layer being probed in the Raman measurement (D(RS)). The Raman scatter was reproducibly enhanced at the interface containing a gold film relative to the sapphire interface by a factor of 4.3-4.6 for aqueous pyridine or 2.2-3.7 for neat nitrobenzene, depending on the analyzed vibrational mode. The mechanism for the increased Raman signal is the enhanced MSEF at incident angles where propagating surface plasmons are excited in the metal film. The background from the TIR prism was reduced by 89-95% with the addition of the gold film, and the percent relative uncertainty in peak area was reduced from 15 to 1.7% for the 1347 cm(-1) mode of nitrobenzene. Single monolayers of benzenethiol (S/N = 6.8) and 4-mercaptopyridine (S/N = 16.5) on gold films were measured by TIR Raman spectroscopy with 785 nm excitation (210 mW) without resonant enhancement in 1 min.
منابع مشابه
External reflection Fourier transform infrared spectroscopy: theory and experimental problems
In the reflection mode of spectroscopic measurements, IR radiation impinges on the surface of a sample and the intensity of the specularly reflected light is recorded. This is an easy to use, non-contact and non-destructive sampling technique suitable for samples with flat and smooth surfaces. The spectra obtained via external reflection depend on a number of factors and differ considerably fro...
متن کاملApplication of scanning angle Raman spectroscopy for determining the location of buried polymer interfaces with tens of nanometer precision.
Near-infrared scanning angle (SA) Raman spectroscopy was utilized to determine the interface location in bilayer films (a stack of two polymer layers) of polystyrene (PS) and polycarbonate (PC). Finite-difference-time-domain (FDTD) calculations of the sum square electric field (SSEF) for films with total bilayer thicknesses of 1200-3600 nm were used to construct models for simultaneously measur...
متن کاملScanning angle Raman spectroscopy of poly(3-hexylthiophene)-based films on indium tin oxide, gold, and sapphire surfaces.
Interest in realizing conjugated polymer-based films with controlled morphology for efficient electronic devices, including photovoltaics, requires a parallel effort to characterize these films. Scanning angle (SA) Raman spectroscopy is applied to measure poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM)-blend morphology on sapphire, gold, and indium tin oxide interfaces...
متن کاملTotal internal reflection Raman spectroscopy.
Total internal reflection (TIR) Raman spectroscopy is an experimentally straightforward, surface-sensitive technique for obtaining chemically specific spectroscopic information from a region within approximately 100-200 nm of a surface. While TIR Raman spectroscopy has long been overshadowed by surface-enhanced Raman scattering, with modern instrumentation TIR Raman spectra can be acquired from...
متن کاملMicro-Raman spectroscopy study of colloidal crystal films of polystyrene-gold composites.
Monolayers and multilayers of polystyrene (PS)-gold composite films prepared by two different deposition methods have been investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and confocal Raman microspectroscopy. The intensity of the 1001 cm(-1) ring breathing mode of PS is used to evaluate the degree of ordering of monolayers and multilay...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 84 10 شماره
صفحات -
تاریخ انتشار 2012